Bizi tercih ettiğiniz için teşekkür ederiz. Ekip üyelerimiz en kısa sürede sizlerle iletişime geçecektir.
Rezervasyonunuzu gönderdiğiniz için teşekkür ederiz! Ekibimizden bir yetkili kısa süre içinde sizinle iletişime geçecektir.
Eğitim İçeriği
Introduction to WrenAI OSS
- Overview of WrenAI architecture
- Key OSS components and ecosystem
- Installation and setup
Semantic Modeling in Wren AI
- Defining semantic layers
- Designing reusable metrics and dimensions
- Best practices for consistency and maintainability
Text to SQL in Practice
- Mapping natural language to queries
- Improving SQL generation accuracy
- Common challenges and troubleshooting
Prompt Tuning and Optimization
- Prompt engineering strategies
- Fine-tuning for enterprise datasets
- Balancing accuracy and performance
Implementing Guardrails
- Preventing unsafe or costly queries
- Validation and approval mechanisms
- Governance and compliance considerations
Integrating WrenAI into Data Workflows
- Embedding Wren AI in pipelines
- Connecting to BI and visualization tools
- Multi-user and enterprise deployments
Advanced Use Cases and Extensions
- Custom plugins and API integrations
- Extending WrenAI with ML models
- Scaling for large datasets
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- SQL ve veritabanı sistemlerine güçlü bir bilgi sahibi olmak
- Veri modelleme ve semantik katmanlar deneyimi
- Makine öğrenimi veya doğal dil işleme kavramlarıyla tanışlık
Kitle
- Veri mühendisleri
- Analitik mühendisleri
- ML mühendisleri
21 Saat