Ollama Applications in Healthcare Eğitimi
Ollama is a lightweight platform for running large language models locally.
This instructor-led, live training (online or onsite) is aimed at intermediate-level healthcare practitioners and IT teams who wish to deploy, customize, and operationalize Ollama-based AI solutions within clinical and administrative environments.
Upon completing this training, participants will be able to:
- Install and configure Ollama for secure use in healthcare settings.
- Integrate local LLMs into clinical workflows and administrative processes.
- Customize models for healthcare-specific terminology and tasks.
- Apply best practices for privacy, security, and regulatory compliance.
Format of the Course
- Interactive lecture and discussion.
- Hands-on demonstrations and guided exercises.
- Practical implementation in a sandboxed healthcare simulation environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Eğitim İçeriği
Introduction to Ollama in Healthcare
- Understanding local LLM deployment
- Why healthcare benefits from on-device models
- Key features and limitations of Ollama
Installing and Configuring Ollama
- System requirements and setup
- Model selection and installation workflow
- Environment configuration for healthcare applications
Healthcare-Specific Use Cases
- Clinical documentation support
- Patient communication and summarization
- Workflow automation in hospitals and clinics
Customizing and Fine-Tuning Models
- Prompt engineering for healthcare scenarios
- Extending models with domain-specific data
- Managing performance and inference quality
Integration with Healthcare Systems
- APIs and interoperability considerations
- Connecting to EHR and HIS environments
- Automation and scripting for daily operations
Data Privacy, Security, and Compliance
- Local model advantages for data protection
- HIPAA and regional regulatory considerations
- Secure deployment patterns
Testing, Validation, and Quality Assurance
- Assessing model accuracy and reliability
- Evaluating clinical safety and risk
- Continuous improvement strategies
Operational Deployment and Maintenance
- Monitoring performance and usage
- Upgrading models and dependencies
- Troubleshooting common issues
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- An understanding of clinical workflows
- Experience with data analysis or healthcare IT systems
- Familiarity with basic AI concepts
Audience
- Healthcare professionals
- Medical IT staff
- Analysts and technical administrators
Açık Eğitim Kursları 5 ve üzeri katılımcı gerektirir.
Ollama Applications in Healthcare Eğitimi - Rezervasyon
Ollama Applications in Healthcare Eğitimi - Talep Oluştur
Ollama Applications in Healthcare - Danışmanlık Talebi
Danışmanlık Talebi
Yaklaşan Etkinlikler
İlgili Kurslar
Sağlık Alanında Agentic AI
14 SaatAgentic AI, AI sistemlerinin hedefleri gerçekleştirmek için belirlenen kısıtlamalar içinde planlama, akıl yürütme ve araç kullanma eylemlerini gerçekleştirdiği bir yaklaşımdır.
Bu eğitmen öncülünde gerçekleştirilen canlı eğitim (çevrimiçi veya yerinde), klinik ve operasyonel kullanım senaryoları için agentic AI çözümleri tasarlamak, değerlendirmek ve yönetmek isteyen orta düzeyde sağlık ve veri takımları hedeflenmiştir.
Bu eğitim sonunda katılımcılar şunları yapabilecektir:
- Sağlık bilişim bağlamında agentic AI kavramlarını ve kısıtlamalarını açıklama.
- Planlama, bellek ve araç kullanımı ile güvenli ajans akışları tasarla.
- Klinik belgeler ve bilgi tabanları üzerinde toplu arama destekli ajanslar oluşturma.
- Güvenlik bandları ve insan dahil denetim kontrolleri ile ajans davranışını değerlendirme, izleme ve yönetme.
Eğitim Formatı
- Etkileşimli ders ve yönlendirilmiş tartışma.
- Test ortamında rehberli laboratuvarlar ve kod açıklamaları.
- Güvenlik, değerlendirme ve yönetimi konularında senaryo tabanlı alıştırmalar.
Eğitim Özelleştirme Seçenekleri
- Bu eğitmenin özelleştirilmiş bir sürümü için lütfen bize başvurunuz.
AI Agents Sağlık ve Tanı için
14 SaatBu eğitmen öncülüğündeki, canlı eğitim Türkiye (çevrimiçi veya yerel) ortamda, AI destekli sağlık çözümünü uygulamak isteyen orta düzeyde ve ileri düzeyde sağlık profesyonellerine ve AI geliştiricilere yönelik olarak tasarlanmıştır.
Bu eğitim sonunda, katılımcılar şunları yapabilecektir:
- Sağlık veagnostikteki AI-Agentlerin rolünü anlamak.
- Tıbbi görüntü analizi ve öngörcü diagnostik için AI modelleri geliştirmek.
- AI'yi elektronik sağlık kayıtları (EHR) ile klinik akışlara entegre etmek.
- Sağlık düzenlemelerine ve etik AI uygulamalarına uyum sağlamak.
Sağlıkta Yapay Zeka(AI) Ve Arttırılmış Gerçeklik(VR) Uygulamaları
14 SaatBu eğitmen tarafından yönetilen canlı eğitim (online veya yerel), tıbbi eğitim, cerrahi simulasyonlar ve rehabilitasyon için AI ve AR/VR çözümlerini uygulamayı isteyen orta düzeyde sağlık profesyonellerine yöneliktir.
Bu eğitim sonunda katılımcılar şunları yapabilecek hale gelecekler:
- Sağlık sektöründe AR/VR deneyimlerini geliştirmenin AI'nin rolünü anlayacaklar.
- Cerrahi simulasyonlarda ve tıbbi eğitimde AR/VR'yi kullanabilecekler.
- Hastaların rehabilitasyonu ve tedavisi için AR/VR araçlarını uygulayabilecekler.
- AI ile güçlendirilmiş tıbbi araçlardaki etik ve gizlilik sorunlarına bakacaklar.
AI ile Sağlık Sektöründe Google Colab Kullanımı
14 SaatBu Türkiye (çevrimiçi veya yerel) eğitim, Google Colab kullanarak gelişmiş sağlık uygulamaları için AI'yı kullanmaya istekli orta düzeyde veri bilimcileri ve sağlık profesyonelleri için tasarlanmıştır.
Eğitim sonunda katılımcılar şunları yapabilecekler:
- Sağlık için Google Colab kullanarak AI modellerini uygulayabilmek.
- Sağlık verileri için tahminsel modellemeye AI'yi kullanabilmek.
- AI destekli tekniklerle tıbbi görüntüleri analiz etmek.
- AI tabanlı sağlık çözümlerinde etik düşünceleri keşfetmek.
Sağlıkta Yapay Zeka
21 SaatBu eğitmen öncülüğündeki canlı eğitim Türkiye (çevrimiçi veya yerinde) orta düzeyde sağlık profesyonellerine ve veri bilimcilerine yöneliktir. Bu kişiler, sağlık ortamlarında YB teknolojilerini anlamayı ve uygulamayı isteyenlerdir.
Bu eğitimden sonra katılımcılar şunları yapabilecektir:
- YB'nin çözebileceği ana sağlık zorluklarını belirlemek.
- YB'nin hastaların bakımına, güvenliğe ve tıbbi araştırmaya etkisini analiz etmek.
- YB ile sağlık sektörü iş modelleri arasındaki ilişkiyi anlamak.
- Temel YB kavramlarını sağlık senaryolarına uygulamak.
- Tıbbi veri analizi için makine öğrenme modelleri geliştirmek.
ChatGPT Sağlık Sektörü için
14 SaatBu Türkiye (çevrimiçi veya yerel) eğitimde, sağlık sektöründeki profesyoneller ve araştırmacılar ChatGPT kullanarak hasta bakımını iyileştirme, iş akışlarını hızlandırma ve sağlık hizmetlerinin sonuçlarını geliştirme amacına ulaşabilir.
Bu eğitimin sonunda, katılımcılar şu becerileri edinebilecekler:
- Sağlık sektöründeki ChatGPT temellerini ve uygulamalarını anlayabilmek.
- Sağlık süreçlerini ve etkileşimleri otomatikleştirmek için ChatGPT'i kullanmak.
- Hasta bakımında ChatGPT kullanarak doğru tıbbi bilgi ve destek sağlamak.
- Tıbbi araştırma ve analizler için ChatGPT'i uygulamak.
Ollama ile LLM'lerin Kullanımını Kurulum ve Optimizasyonu
14 SaatBu eğitmen liderliğindeki canlı eğitim, Türkiye (çevrimiçi veya yerinde), Ollama kullanarak LLM'leri dağıtmak, optimize etmek ve entegre etmek isteyen orta düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecekler:
- Ollama kullanarak LLM'leri kurup dağıtabilir.
- AI modellerini performans ve verimlilik için optimize edebilir.
- GPU hızlandırmayı kullanarak çıkarım hızlarını artırabilir.
- Ollama'ü iş akışlarına ve uygulamalara entegre edebilir.
- AI model performansını zaman içinde izleyip sürdürebilir.
Tıp için Kenarüstü AI
14 SaatBu eğitmen öncülüğünde, canlı eğitim (Türkiye de çevrimiçi veya yerel olarak) orta düzeyde sağlık profesyonellerine, biyomedikal mühendislerine ve Edge AI'yi inovatif sağlık çözümleri için kullanmak isteyen AI geliştiricilerine yönelik olmaktadır.
Bu eğitim sonunda, katılımcılar şunları yapabilecekler:
- Sağlık sektöründe Edge AI'nin rolünü ve faydalarını anlamak.
- Sağlık uygulamaları için kenar cihazlarda AI modelleri geliştirmek ve dağıtma.
- Kenar cihazları ve teşhis araçlarında Edge AI çözümlerini uygulama.
- Edge AI kullanarak hastane izleme sistemlerini tasarlamak ve dağıtma.
- Sağlık sektöründe AI uygulamalarında etik ve düzenleyici meseleleri ele alma.
Sağlık Hizmetleri için AI'nin İyileştirilmesi: Tıbbi Tanı ve Tahmine Dayalı Analitik
14 SaatBu eğitmen-led, canlı eğitim Türkiye (çevrimiçi veya kurum içi) orta düzeyden ileri düzeyli tıbbi AI geliştiricileri ve veri bilimcilerine yönelik olup, yapılandırılmış ve yapılandırılmamış tıbbi veriler kullanarak klinik tanı, hastalık tahmini ve hasta sonuçları öngörüsü için modellerin iyileştirilmesini amaçlamaktadır.
Bu eğitim sonunda katılımcılar şunları yapabilecektir:
- EMR'ler, görüntüleme ve zaman serisi verileri gibi sağlık hizmetleri veri kümelerinde AI modellerini iyileştirebileceklerdir.
- Transfer öğrenimi, alan uyarlama ve model sıkıştırmasını tıbbi bağlamlarda uygulayabileceklerdir.
- Model geliştirme sürecinde gizlilik, önyargı ve düzenleyici uyumluluğu ele alabileceklerdir.
- Gerçek dünya sağlık hizmeti ortamlarında iyileştirilmiş modelleri dağıtabilecektir ve izlenebilecektir.
Generative AI ve Prompt Engineering Sağlık Alanında
8 SaatÜretici AI, istekler ve verilere dayanarak metin, görüntü ve tavsiyeler gibi yeni içerik yaratan bir teknolojidir.
Bu eğitmen yönlü canlı eğitim (çevrimiçi veya yerel), üretici AI ve istek mühendisliği kullanarak tıbbi bağlamda verimliliği, doğruluğunu ve iletişimi geliştirmeyi hedefleyen başlangıç seviyesinden orta seviyeye kadar sağlık profesyonellerine yöneliktir.
Bu eğitim sonunda, katılımcılar:
- Üretici AI ve istek mühendisliğinin temellerini anlamayı öğrenecekler.
- AI araçlarını klinik, idari ve araştırma görevlerini basitleştirmek için uygulayabilecekler.
- Sağlıkta etik, güvenli ve uyumlu AI kullanımını sağlayacaklar.
- Tutarlı ve doğru sonuçlar elde etmek için istekleri optimize edebilecekler.
Eğitim Biçimi
- Etkileşimli ders anlatımı ve tartışmalar.
- Pratik alıştırmalar ve durum çalışması.
- AI araçlarıyla el ile deneyimler.
Eğitim Özelleştirme Seçenekleri
- Bu eğitim için özel bir eğitim talebinde bulunmak istiyorsanız, biziidgetmek için iletişime geçin.
Tıbbi Generatif AI: Tıp ve Hastane Gözcülüğünü Dönüşüme Sokma
21 SaatBu eğitmen öncülüğündeki canlı eğitim (çevrimiçi veya yerel-site), sağlık sektöründe generative AI'yi anlamak ve uygulamak isteyen başlangıç seviyesinden orta düzeylere kadar olan sağlık profesyonellerini, veri analistlerini ve politika yapıcıları için tasarlanmıştır.
Bu eğitim sonunda, katılımcılar şunları yapabilecektir:
- Sağlık sektöründe generative AI'nin ilkelerini ve uygulamalarını açıklama.
- Generative AI'nin ilaç keşfi ve kişiselleştirilmiş tıbbı geliştirmek için olan fırsatları belirleme.
- Tıbbi görüntü işleme ve tanılamada generative AI tekniklerini kullanma.
- Tıbbi ortamlarda yapay zeka'nın etik sonuçlarını değerlendirmek.
- Sağlık sistemlerine AI teknolojilerini entegre etme stratejileri geliştirme.
LangGraph in Healthcare: Regüle Edilmiş Ortamlarda İş Akışı Koordinasyonu
35 SaatLangGraph, LLM'ler tarafından desteklenen durum bilgisi olan ve çok oyunculu iş akışları oluşturmayı sağlayan bir platformdur. Bu platform, yürütme yolları üzerinde kesin kontrol sağlar ve durum kalıcılığını yönetir. Sağlık alanında bu yetkinlikler, uyumluluk, entegrasyon ve tıp iş akışlarına uyan karar destek sistemleri oluşturmada kritik öneme sahiptir.
Bu eğitmen-leden, canlı eğitim (online veya yerinde) ara seviye ile üst düzey profesyoneller hedeflenmektedir. Bu kişiler, düzenleyici, etik ve operasyonel zorluklarla başa çıkarak LangGraph tabanlı sağlık çözümleri tasarlama, uygulama ve yönetme becerilerini geliştirmeyi amaçlar.
Bu eğitimden sonra katılımcılar şunları yapabilecekler:
- Uyumluluğu ve denetlenebilirliği göz önünde bulundurarak sağlık spesifik LangGraph iş akışları tasarlamak.
- LangGraph uygulamalarını tıbbi ontolojiler ve standartlarla (FHIR, SNOMED CT, ICD) entegre etmek.
- Hassas ortamlarda güvenilirlik, izlenebilirlik ve açıklanabilirlik için en iyi uygulamaları uygulamak.
- LangGraph uygulamalarını sağlık üretim ortamlarında dağıtmak, izlemek ve doğrulamak.
Eğitim Formatı
- Etkileşimli ders ve tartışma.
- Gerçek dünya vakası çalışmaları ile pratik alıştırmalar.
- Canlı-lab ortamında uygulama uygulaması.
Eğitim Özelleştirme Seçenekleri
- Bu eğitimin özelleştirilmiş bir sürümünü talep etmek için lütfen bize ulaşın.
Sağlık Sektörü İçin Multimodal AI
21 SaatBu eğitmen öncülüğündeki, canlı eğitim (Türkiye - çevrimiçi veya yerel), multimodal yapay zeka uygulamalarını tıbbiagnostik ve sağlık uygulamalarında kullanmak isteyen orta düzeyden ileri düzey healthcare profesyonellerine, tıp araştırmacılara ve AI geliştiricilerine yöneliktir.
Bu eğitim sonunda, katılımcılar şunları yapabilecekler:
- Modern sağlık hizmetlerinde multimodal yapay zeka rolünü anlamak.
- AI destekliagnostiğe için yapılandırılmış ve yapılandırılmamış tıbbi verileri entegre etmek.
- Tıbbi görüntüleri ve elektronik sağlık kayıtlarını analiz etmek için yapay zeka tekniklerini uygulamak.
- Hastalık tanıları ve tedavi önerileri için öngörücü modeller geliştirme.
- Tıbbi transkripsiyon ve hasta etkileşimleri için konuşma ve doğal dil işleme (NLP) uygulamak.
Ollama ile Başlangıç: Yerel AI Modellerini Çalıştırma
7 SaatBu eğitmen-destekli canlı eğitim (online veya face-to-face), yerel bilgisayarlarında AI modellerini çalıştırmak için Ollama platformunu yüklemek, yapılandırmak ve kullanmak isteyen başlangıç düzeyinde profesyonellere yönelik olup, Türkiye konumunda gerçekleştirilir.
Bu eğitim sonunda katılımcılar şunları yapabilecek hale gelecekler:
- Ollama'nin temellerini ve yeteneklerini anlamak.
- Yerel AI modelleri çalıştırmak için Ollama’yi kurmak.
- Ollama kullanarak LLM'leri (Large Language Models) dağıtmak ve etkileşimde bulunmak.
- AI yükleri için performansı ve kaynak kullanımını optimize etmek.
- Yerel AI dağıtımının çeşitli sektörlerdeki kullanımlarını keşfetmek.
Sağlık Alanı için Prompt Mühendisliği
14 SaatBu eğitmen yönlü, canlı eğitim Türkiye (çevrimiçi veya yerel) ortamında, tıbbi iş akışlarını, araştırma verimliliğini ve hasta sonuçlarını geliştirmek için benzetim mühendisliği tekniklerini kullanmak isteyen orta düzeyde sağlık profesyonellerine ve AI geliştiricilere yönelik olarak tasarlanmıştır.
Bu eğitim sonunda, katılımcılar aşağıdaki becerileri kazanacaklardır:
- Sağlık alanında benzetim mühendisliğinin temellerini anlamak.
- Klinik belgelerin ve hasta etkileşimlerinde AI benzetimleri kullanmak.
- Tıbbi araştırmalar ve literatür gözden geçirme için AI'yi kullanmak.
- AI destekli benzetimlerle ilaç keşfi ve klinik karar alma süreçlerini geliştirmek.
- Sağlık alanında AI'nin yasal ve etik standartları karşılamak için gereken adımları sağlamak.