Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Eğitimi
Edge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Eğitim İçeriği
Introduction to Edge AI in Industrial Settings
- Why edge computing matters in manufacturing
- Comparison with cloud-based AI
- Use cases in vision, predictive maintenance, and control
Hardware Platforms and Device-Level Constraints
- Overview of common edge hardware (Raspberry Pi, NVIDIA Jetson, Intel NUC)
- Processing, memory, and power considerations
- Selecting the right platform for application type
Model Development and Optimization for Edge
- Model compression, pruning, and quantization techniques
- Using TensorFlow Lite and ONNX for embedded deployment
- Balancing accuracy vs. speed in constrained environments
Computer Vision and Sensor Fusion at the Edge
- Edge-based visual inspection and monitoring
- Integrating data from multiple sensors (vibration, temperature, cameras)
- Real-time anomaly detection with Edge Impulse
Communication and Data Exchange
- Using MQTT for industrial messaging
- Integrating with SCADA, OPC-UA, and PLC systems
- Security and resilience in edge communications
Deployment and Field Testing
- Packaging and deploying models on edge devices
- Monitoring performance and managing updates
- Case study: real-time decision loop with local actuation
Scaling and Maintenance of Edge AI Systems
- Edge device management strategies
- Remote updates and model retraining cycles
- Lifecycle considerations for industrial-grade deployment
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- An understanding of embedded systems or IoT architectures
- Experience with Python or C/C++ programming
- Familiarity with machine learning model development
Audience
- Embedded developers
- Industrial IoT teams
Açık Eğitim Kursları 5 ve üzeri katılımcı gerektirir.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Eğitimi - Booking
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Eğitimi - Enquiry
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level - Danışmanlık Talebi
Danışmanlık Talebi
Yaklaşan Etkinlikler
İlgili Kurslar
Gelişmiş Edge AI Teknikler
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yapay zeka alanında ileri düzeyde pratik uygulayıcılar, araştırmacılar ve geliştiriciler için tasarlanmıştır. Amaçları, Edge AI alanındaki en son gelişmeleri öğrenmek, yapay zeka modellerini kenar dağıtımı için optimize etmek ve çeşitli sektörlerdeki uzmanlık uygulamalarını keşfetmektir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Gelişmiş Edge AI model geliştirme ve optimizasyon tekniklerini keşfetmek.
- Yapay zeka modellerini kenar cihazlarına dağıtmak için son teknoloji stratejileri uygulamak.
- Gelişmiş Edge AI uygulamaları için özel araçları ve çerçeveleri kullanmak.
- Edge AI çözümlerinin performansını ve verimliliğini optimize etmek.
- Edge AI alanındaki yenilikçi kullanım durumlarını ve ortaya çıkan eğilimleri keşfetmek.
- Edge AI dağıtımlarında gelişmiş etik ve güvenlik hususlarını ele almak.
Building AI Solutions on the Edge
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), çeşitli uygulamalar için AI modellerini uç cihazlara dağıtma konusunda pratik beceriler kazanmak isteyen orta seviyedeki geliştiriciler, veri bilimciler ve teknoloji meraklılarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI prensiplerini ve faydalarını anlayabilecektir.
- Uç bilişim ortamını kurup yapılandırabilecektir.
- Uç dağıtım için AI modelleri geliştirebilecek, eğitebilecek ve optimize edebilecektir.
- Uç cihazlarda pratik AI çözümleri uygulayabilecektir.
- Uç dağıtımlı modellerin performansını değerlendirebilecek ve iyileştirebilecektir.
- Edge AI uygulamalarında etik ve güvenlik hususlarını ele alabilecektir.
AI-Powered Predictive Maintenance for Industrial Systems
14 SaatAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 SaatAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 SaatAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 SaatAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 SaatAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 SaatAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Digital Twins with AI and Real-Time Data
21 SaatDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI: Kavramdan Uygulamaya
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), Edge AI kavramından pratik uygulamaya, kurulum ve dağıtım dahil olmak üzere kapsamlı bir anlayış kazanmak isteyen orta düzeydeki geliştiriciler ve BT profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'un temel kavramlarını anlayabilecektir.
- Edge AI ortamlarını kurup yapılandırabilecektir.
- Edge AI modellerini geliştirebilecek, eğitebilecek ve optimize edebilecektir.
- Edge AI uygulamalarını dağıtabilecek ve yönetebilecektir.
- Edge AI'u mevcut sistemlerle ve iş akışlarıyla entegre edebilecektir.
- Edge AI uygulamasında etik hususları ve en iyi uygulamaları ele alabilecektir.
Edge AI Sağlık Sektörü için
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yenilikçi sağlık çözümleri için Edge AI'i kullanmak isteyen orta seviyedeki sağlık profesyonelleri, biyomedikal mühendisleri ve yapay zeka geliştiricilerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Sağlık alanında Edge AI'in rolünü ve faydalarını anlayabilecekler.
- Sağlık uygulamaları için uç cihazlarda yapay zeka modelleri geliştirebilecek ve dağıtabilecekler.
- Edge AI çözümlerini giyilebilir cihazlarda ve teşhis araçlarında uygulayabilecekler.
- Edge AI kullanarak hasta izleme sistemleri tasarlayabilecek ve dağıtabilecekler.
- Sağlık alanındaki yapay zeka uygulamalarında etik ve yasal hususları ele alabilecekler.
Edge AI IoT Uygulamaları için
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), orta seviyedeki geliştiriciler, sistem mimarları ve akıllı veri işleme ve analiz yetenekleriyle IoT uygulamalarını geliştirmek için Edge AI'ü kullanmak isteyen sektör profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'ün temellerini ve IoT'deki uygulamasını anlayabilecektir.
- IoT cihazları için Edge AI ortamlarını kurup yapılandırabilecektir.
- IoT uygulamaları için uç cihazlarda yapay zeka modelleri geliştirebilecek ve dağıtabilecektir.
- IoT sistemlerinde gerçek zamanlı veri işleme ve karar alma mekanizmalarını uygulayabilecektir.
- Edge AI'ü çeşitli IoT protokolleri ve platformlarıyla entegre edebilecektir.
- IoT için Edge AI'te etik hususları ve en iyi uygulamaları ele alabilecektir.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 SaatIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Giriş Edge AI
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), Edge AI temellerini ve giriş seviyesi uygulamalarını anlamak isteyen başlangıç seviyesindeki geliştiriciler ve BT profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'ün temel kavramlarını ve mimarisini anlayabilecektir.
- Edge AI ortamlarını kurup yapılandırabilecektir.
- Basit Edge AI uygulamaları geliştirebilecek ve dağıtabilecektir.
- Edge AI'ün kullanım durumlarını ve faydalarını belirleyebilecek ve anlayabilecektir.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control
21 SaatSmart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.