Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Eğitimi
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Eğitim İçeriği
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Açık Eğitim Kursları 5 ve üzeri katılımcı gerektirir.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Eğitimi - Booking
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Eğitimi - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Danışmanlık Talebi
Danışmanlık Talebi
Yaklaşan Etkinlikler
İlgili Kurslar
AI-Powered Predictive Maintenance for Industrial Systems
14 SaatAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 SaatAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 SaatAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 SaatAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 SaatAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 SaatAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Gelişmiş Zeka ile Bot Geliştirme Azure
14 SaatAzure Bot Hizmeti, Microsoft Bot Framework ve Azure işlevlerinin gücünü birleştirerek akıllı botların hızlı bir şekilde geliştirilmesini sağlar.
Bu eğitmen liderliğindeki canlı eğitimde katılımcılar, Microsoft Azure kullanarak akıllı bir botu nasıl kolayca oluşturacaklarını öğreneceklerdir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Akıllı botların temellerini öğrenmek
- Cloud uygulamalarını kullanarak akıllı botlar nasıl oluşturulacağını öğrenmek
- Microsoft Bot Framework, Bot Builder SDK ve Azure Bot Hizmeti'ni nasıl kullanacaklarını anlayabilmek
- Bot desenleri kullanarak botları nasıl tasarlayacaklarını anlamak
- Microsoft Azure kullanarak ilk akıllı botunu geliştirmek
Hedef Kitle
- Geliştiriciler
- Akıl hocaları
- Mühendisler
- IT Uzmanları
Kurs Formatı
- Soru-ceva, tartışmalar, alıştırmalar ve yoğun uygulamalı çalışmalardan oluşan bir format
Developing a Bot
14 SaatBir bot veya sohbet robotu, çeşitli mesajlaşma platformlarında kullanıcı etkileşimlerini otomatikleştirmek ve kullanıcıların başka bir insanla konuşmasına gerek kalmadan işleri daha hızlı halletmek için kullanılan bir bilgisayar asistanıdır.
Bu eğitmen liderliğindeki, canlı eğitimde katılımcılar, bot geliştirme araçlarını ve çerçevelerini kullanarak örnek sohbet robotları oluşturarak bir bot geliştirmeye nasıl başlayacaklarını öğreneceklerdir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Botların farklı kullanımlarını ve uygulamalarını anlayabilmek
- Bot geliştirmenin tüm sürecini anlayabilmek
- Bot oluşturmak için kullanılan farklı araçları ve platformları keşfedebilmek
- Facebook Messenger için örnek bir sohbet robotu oluşturabilmek
- Microsoft Bot Framework kullanarak örnek bir sohbet robotu oluşturabilmek
Hedef Kitle
- Kendi botlarını oluşturmakla ilgilenen geliştiriciler
Kurs Formatı
- Kısmen ders anlatımı, kısmen tartışma, egzersizler ve yoğun uygulamalı çalışma
Building Digital Twins with AI and Real-Time Data
21 SaatDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 SaatEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 SaatIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) Mekatronik için
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), mekanatronik sistemlere yapay zekanın uygulanabilirliğini öğrenmek isteyen mühendiflere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Yapay zeka, makine öğrenimi ve hesaplamalı zeka hakkında genel bir bakış kazanmak.
- Sinir ağları ve farklı öğrenme yöntemleri kavramlarını anlamak.
- Gerçek hayattaki sorunlar için yapay zeka yaklaşımlarını etkili bir şekilde seçmek.
- Mekanatronik mühendisliğinde yapay zeka uygulamalarını uygulamak.
Robotik ve Otomasyon için Physical AI
21 SaatBu eğitmen eşliğindeki canlı eğitim Türkiye'de (çevrimiçi veya yerinde) düzenlenmekte olup, otomasyon ve ötesi için akıllı robotik sistemler tasarlama, programlama ve konuşlandırma becerilerini geliştirmek isteyen orta düzey katılımcıları hedeflemektedir.
Bu eğitimin sonunda katılımcılar şunları yapabilecekler:
- Physical AI ilkelerini ve robotik ve otomasyondaki uygulamalarını anlamak.
- Dinamik ortamlar için akıllı robotik sistemler tasarlamak ve programlamak.
- Robotlarda otonom karar alma için AI modellerini uygulamak.
- Robotik test ve optimizasyon için simülasyon araçlarını kullanmak.
- Sensör füzyonu, gerçek zamanlı işleme ve enerji verimliliği gibi zorlukları ele almak.
Smart Robots Geliştiriciler İçin
84 SaatAkıllı bir Robot, çevresinden ve deneyimlerinden öğrenen ve bu bilgiye dayanarak yeteneklerini geliştiren Artificial Intelligence (AI) sistemdir. Smart Robots, insanlar ile işbirliği yapabilir, onlarla birlikte çalışabilir ve onların davranışlarından öğrenebilir. Ayrıca, yalnızca manuel işçilik değil, bilişsel görevleri de yerine getirme kapasitesine sahiptir. Fiziksel robotlara ek olarak, Smart Robots tamamen yazılım tabanlı olabilir, bir bilgisayarda herhangi bir hareketli parçası veya dünya ile fiziksel etkileşimi olmayan bir yazılım uygulaması olarak yer alabilir.
Bu eğitmen liderliğindeki canlı eğitimde, katılımcılar farklı türdeki mekanik Smart Robots'leri programlamak için kullanılan çeşitli teknolojileri, çerçeveleri ve teknikleri öğrenecek ve ardından bu bilgiyi kendi Akıllı Robot projelerini tamamlamak için uygulayacaklardır.
Kurs, her biri üç günlük dersler, tartışmalar ve canlı laboratuvar ortamında uygulamalı robot geliştirmeden oluşan 4 bölüme ayrılmıştır. Her bölüm, katılımcıların öğrendiklerini uygulamalarına ve göstermelerine olanak tanıyan pratik bir uygulamalı projeyle sonuçlanacaktır.
Kurs için hedef donanım, simülasyon yazılımı aracılığıyla 3B olarak simüle edilecektir. Robot İşletim Sistemi (ROS) ROS açık kaynak çerçevesi, C++ ve Python robotları programlamak için kullanılacaktır.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Robot teknolojilerinde kullanılan temel kavramları anlayabilmek
- Bir robot sistemindeki yazılım ve donanım arasındaki etkileşimi anlayıp yönetebilmek
- Smart Robots'ün temelini oluşturan yazılım bileşenlerini anlayıp uygulayabilmek
- Görebilen, algılayabilen, işleyebilen, kavrayabilen, gezinebilen ve sesli olarak insanlarla etkileşim kurabilen simüle edilmiş mekanik bir Akıllı Robot oluşturup çalıştırabilmek
- Deep Learning aracılığıyla bir Akıllı Robot'un karmaşık görevleri gerçekleştirme yeteneğini genişletebilmek
- Bir Akıllı Robot'u gerçekçi senaryolarda test edip sorun giderebilmek
Hedef Kitle
- Geliştiriciler
- Mühendisler
Kurs Formatı
- Kısmen ders, kısmen tartışma, egzersizler ve yoğun uygulamalı pratik
Not
- Bu kursun herhangi bir bölümünü (programlama dili, robot modeli vb.) özelleştirmek için lütfen bizimle iletişime geçerek düzenleme yapabilirsiniz.