CANN for Edge AI Deployment Eğitimi
Huawei's Ascend CANN toolkit enables powerful AI inference on edge devices such as the Ascend 310. CANN provides essential tools for compiling, optimizing, and deploying models where compute and memory are constrained.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and integrators who wish to deploy and optimize models on Ascend edge devices using the CANN toolchain.
By the end of this training, participants will be able to:
- Prepare and convert AI models for Ascend 310 using CANN tools.
- Build lightweight inference pipelines using MindSpore Lite and AscendCL.
- Optimize model performance for limited compute and memory environments.
- Deploy and monitor AI applications in real-world edge use cases.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work with edge-specific models and scenarios.
- Live deployment examples on virtual or physical edge hardware.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Eğitim İçeriği
Introduction to Edge AI and Ascend 310
- Overview of Edge AI: trends, constraints, and applications
- Huawei Ascend 310 chip architecture and supported toolchain
- Positioning CANN within the edge AI deployment stack
Model Preparation and Conversion
- Exporting trained models from TensorFlow, PyTorch, and MindSpore
- Using ATC to convert models to OM format for Ascend devices
- Handling unsupported ops and lightweight conversion strategies
Developing Inference Pipelines with AscendCL
- Using the AscendCL API to run OM models on Ascend 310
- Input/output preprocessing, memory handling, and device control
- Deploying within embedded containers or lightweight runtime environments
Optimization for Edge Constraints
- Reducing model size, precision tuning (FP16, INT8)
- Using the CANN profiler to identify bottlenecks
- Managing memory layout and data streaming for performance
Deploying with MindSpore Lite
- Using MindSpore Lite runtime for mobile and embedded targets
- Comparing MindSpore Lite with raw AscendCL pipeline
- Packaging inference models for device-specific deployment
Edge Deployment Scenarios and Case Studies
- Case study: smart camera with object detection model on Ascend 310
- Case study: real-time classification in an IoT sensor hub
- Monitoring and updating deployed models at the edge
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- Experience with AI model development or deployment workflows
- Basic knowledge of embedded systems, Linux, and Python
- Familiarity with deep learning frameworks such as TensorFlow or PyTorch
Audience
- IoT solution developers
- Embedded AI engineers
- Edge system integrators and AI deployment specialists
Açık Eğitim Kursları 5 ve üzeri katılımcı gerektirir.
CANN for Edge AI Deployment Eğitimi - Booking
CANN for Edge AI Deployment Eğitimi - Enquiry
CANN for Edge AI Deployment - Danışmanlık Talebi
Danışmanlık Talebi
Yaklaşan Etkinlikler
İlgili Kurslar
Gelişmiş Edge AI Teknikler
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yapay zeka alanında ileri düzeyde pratik uygulayıcılar, araştırmacılar ve geliştiriciler için tasarlanmıştır. Amaçları, Edge AI alanındaki en son gelişmeleri öğrenmek, yapay zeka modellerini kenar dağıtımı için optimize etmek ve çeşitli sektörlerdeki uzmanlık uygulamalarını keşfetmektir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Gelişmiş Edge AI model geliştirme ve optimizasyon tekniklerini keşfetmek.
- Yapay zeka modellerini kenar cihazlarına dağıtmak için son teknoloji stratejileri uygulamak.
- Gelişmiş Edge AI uygulamaları için özel araçları ve çerçeveleri kullanmak.
- Edge AI çözümlerinin performansını ve verimliliğini optimize etmek.
- Edge AI alanındaki yenilikçi kullanım durumlarını ve ortaya çıkan eğilimleri keşfetmek.
- Edge AI dağıtımlarında gelişmiş etik ve güvenlik hususlarını ele almak.
[Aİ Uygulamalarının Huawei Ascend ve CANN ile Geliştirilmesi]
21 SaatHuawei Ascend yüksek performanslı çıkarım ve eğitim için tasarlanmış bir yapay zeka işlemci ailesidir.
Bu eğitmen yönetimi altında gerçekleşen canlı eğitim (online veya on-site), Huawei'nın Ascend platformunu ve CANN araç setini kullanarak sinir ağ modeli geliştirme ve optimizasyonu isteyen orta düzeyde yapay zeka mühendisleri ve veri bilimcilerine yöneliktir.
Eğitim sonunda katılımcılar şunları yapabilecekler:
- CANN geliştirme ortamını kurma ve yapılandırma.
- MindSpore ve CloudMatrix iş akışlarını kullanarak yapay zeka uygulamaları geliştirme.
- Özel operatörler ve tiling kullanarak Ascend NPUs üzerinde performans optimizasyonu.
- Modelleri kenar veya bulut ortamlarına dağıtma.
Eğitim Formatı
- Interaktif ders anlatımı ve tartışma.
- Huawei Ascend ve CANN araç setinin örnek uygulamalarda el ile kullanımı.
- Model oluşturma, eğitim ve dağıtım odaklı yönlendirilmiş egzersizler.
Eğitim Özelleştirme Seçenekleri
- Bu kurs için altyapınız veya veri kümeleriniz üzerine özelleştirilmiş bir eğitim talep etmek için lütfen bizimle iletişime geçin.
Deploying AI Models with CANN and Ascend AI Processors
14 SaatCANN (Compute Architecture for Neural Networks) is Huawei’s AI compute stack for deploying and optimizing AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and engineers who wish to deploy trained AI models efficiently to Huawei Ascend hardware using the CANN toolkit and tools such as MindSpore, TensorFlow, or PyTorch.
By the end of this training, participants will be able to:
- Understand the CANN architecture and its role in the AI deployment pipeline.
- Convert and adapt models from popular frameworks to Ascend-compatible formats.
- Use tools like ATC, OM model conversion, and MindSpore for edge and cloud inference.
- Diagnose deployment issues and optimize performance on Ascend hardware.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work using CANN tools and Ascend simulators or devices.
- Practical deployment scenarios based on real-world AI models.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building AI Solutions on the Edge
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), çeşitli uygulamalar için AI modellerini uç cihazlara dağıtma konusunda pratik beceriler kazanmak isteyen orta seviyedeki geliştiriciler, veri bilimciler ve teknoloji meraklılarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI prensiplerini ve faydalarını anlayabilecektir.
- Uç bilişim ortamını kurup yapılandırabilecektir.
- Uç dağıtım için AI modelleri geliştirebilecek, eğitebilecek ve optimize edebilecektir.
- Uç cihazlarda pratik AI çözümleri uygulayabilecektir.
- Uç dağıtımlı modellerin performansını değerlendirebilecek ve iyileştirebilecektir.
- Edge AI uygulamalarında etik ve güvenlik hususlarını ele alabilecektir.
Introduction to CANN for AI Framework Developers
7 SaatCANN (Compute Architecture for Neural Networks) is Huawei’s AI computing toolkit used to compile, optimize, and deploy AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at beginner-level AI developers who wish to understand how CANN fits into the model lifecycle from training to deployment, and how it works with frameworks like MindSpore, TensorFlow, and PyTorch.
By the end of this training, participants will be able to:
- Understand the purpose and architecture of the CANN toolkit.
- Set up a development environment with CANN and MindSpore.
- Convert and deploy a simple AI model to Ascend hardware.
- Gain foundational knowledge for future CANN optimization or integration projects.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with simple model deployment.
- Step-by-step walkthrough of the CANN toolchain and integration points.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Understanding Huawei’s AI Compute Stack: From CANN to MindSpore
14 SaatHuawei’s AI stack — from the low-level CANN SDK to the high-level MindSpore framework — offers a tightly integrated AI development and deployment environment optimized for Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level technical professionals who wish to understand how the CANN and MindSpore components work together to support AI lifecycle management and infrastructure decisions.
By the end of this training, participants will be able to:
- Understand the layered architecture of Huawei’s AI compute stack.
- Identify how CANN supports model optimization and hardware-level deployment.
- Evaluate the MindSpore framework and toolchain in relation to industry alternatives.
- Position Huawei's AI stack within enterprise or cloud/on-prem environments.
Format of the Course
- Interactive lecture and discussion.
- Live system demos and case-based walkthroughs.
- Optional guided labs on model flow from MindSpore to CANN.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Optimizing Neural Network Performance with CANN SDK
14 SaatCANN SDK (Compute Architecture for Neural Networks) is Huawei’s AI compute foundation that allows developers to fine-tune and optimize the performance of deployed neural networks on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI developers and system engineers who wish to optimize inference performance using CANN’s advanced toolset, including the Graph Engine, TIK, and custom operator development.
By the end of this training, participants will be able to:
- Understand CANN's runtime architecture and performance lifecycle.
- Use profiling tools and Graph Engine for performance analysis and optimization.
- Create and optimize custom operators using TIK and TVM.
- Resolve memory bottlenecks and improve model throughput.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with real-time profiling and operator tuning.
- Optimization exercises using edge-case deployment examples.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
CANN SDK for Computer Vision and NLP Pipelines
14 SaatThe CANN SDK (Compute Architecture for Neural Networks) provides powerful deployment and optimization tools for real-time AI applications in computer vision and NLP, especially on Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI practitioners who wish to build, deploy, and optimize vision and language models using the CANN SDK for production use cases.
By the end of this training, participants will be able to:
- Deploy and optimize CV and NLP models using CANN and AscendCL.
- Use CANN tools to convert models and integrate them into live pipelines.
- Optimize inference performance for tasks like detection, classification, and sentiment analysis.
- Build real-time CV/NLP pipelines for edge or cloud-based deployment scenarios.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab with model deployment and performance profiling.
- Live pipeline design using real CV and NLP use cases.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Custom AI Operators with CANN TIK and TVM
14 SaatCANN TIK (Tensor Instruction Kernel) and Apache TVM enable advanced optimization and customization of AI model operators for Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at advanced-level system developers who wish to build, deploy, and tune custom operators for AI models using CANN’s TIK programming model and TVM compiler integration.
By the end of this training, participants will be able to:
- Write and test custom AI operators using the TIK DSL for Ascend processors.
- Integrate custom ops into the CANN runtime and execution graph.
- Use TVM for operator scheduling, auto-tuning, and benchmarking.
- Debug and optimize instruction-level performance for custom computation patterns.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on coding of operators using TIK and TVM pipelines.
- Testing and tuning on Ascend hardware or simulators.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI Otonom Sistemlerde
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yenilikçi otonom sistem çözümleri için Edge AI'yı kullanmak isteyen orta seviyedeki robotik mühendisleri, otonom araç geliştiricileri ve yapay zeka araştırmacılarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Otonom sistemlerde Edge AI'nın rolünü ve faydalarını anlayabilecekler.
- Gerçek zamanlı işleme için uç cihazlarda yapay zeka modelleri geliştirebilecek ve dağıtabilecekler.
- Edge AI çözümlerini otonom araçlar, dronlar ve robotikte uygulayabilecekler.
- Edge AI kullanarak kontrol sistemlerini tasarlayabilecek ve optimize edebilecekler.
- Otonom yapay zeka uygulamalarında etik ve yasal hususları ele alabilecekler.
Edge AI: Kavramdan Uygulamaya
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), Edge AI kavramından pratik uygulamaya, kurulum ve dağıtım dahil olmak üzere kapsamlı bir anlayış kazanmak isteyen orta düzeydeki geliştiriciler ve BT profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'un temel kavramlarını anlayabilecektir.
- Edge AI ortamlarını kurup yapılandırabilecektir.
- Edge AI modellerini geliştirebilecek, eğitebilecek ve optimize edebilecektir.
- Edge AI uygulamalarını dağıtabilecek ve yönetebilecektir.
- Edge AI'u mevcut sistemlerle ve iş akışlarıyla entegre edebilecektir.
- Edge AI uygulamasında etik hususları ve en iyi uygulamaları ele alabilecektir.
Edge AI Sağlık Sektörü için
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yenilikçi sağlık çözümleri için Edge AI'i kullanmak isteyen orta seviyedeki sağlık profesyonelleri, biyomedikal mühendisleri ve yapay zeka geliştiricilerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Sağlık alanında Edge AI'in rolünü ve faydalarını anlayabilecekler.
- Sağlık uygulamaları için uç cihazlarda yapay zeka modelleri geliştirebilecek ve dağıtabilecekler.
- Edge AI çözümlerini giyilebilir cihazlarda ve teşhis araçlarında uygulayabilecekler.
- Edge AI kullanarak hasta izleme sistemleri tasarlayabilecek ve dağıtabilecekler.
- Sağlık alanındaki yapay zeka uygulamalarında etik ve yasal hususları ele alabilecekler.
Edge AI IoT Uygulamaları için
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), orta seviyedeki geliştiriciler, sistem mimarları ve akıllı veri işleme ve analiz yetenekleriyle IoT uygulamalarını geliştirmek için Edge AI'ü kullanmak isteyen sektör profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'ün temellerini ve IoT'deki uygulamasını anlayabilecektir.
- IoT cihazları için Edge AI ortamlarını kurup yapılandırabilecektir.
- IoT uygulamaları için uç cihazlarda yapay zeka modelleri geliştirebilecek ve dağıtabilecektir.
- IoT sistemlerinde gerçek zamanlı veri işleme ve karar alma mekanizmalarını uygulayabilecektir.
- Edge AI'ü çeşitli IoT protokolleri ve platformlarıyla entegre edebilecektir.
- IoT için Edge AI'te etik hususları ve en iyi uygulamaları ele alabilecektir.
Giriş Edge AI
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), Edge AI temellerini ve giriş seviyesi uygulamalarını anlamak isteyen başlangıç seviyesindeki geliştiriciler ve BT profesyonellerine yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI'ün temel kavramlarını ve mimarisini anlayabilecektir.
- Edge AI ortamlarını kurup yapılandırabilecektir.
- Basit Edge AI uygulamaları geliştirebilecek ve dağıtabilecektir.
- Edge AI'ün kullanım durumlarını ve faydalarını belirleyebilecek ve anlayabilecektir.
Güvenlik ve Gizlilik Edge AI
14 SaatBu eğitmen liderliğindeki, canlı eğitim (online veya yerinde), Edge AI çözümlerini güvence altına almak ve etik bir şekilde dağıtmak isteyen orta seviyedeki siber güvenlik uzmanları, sistem yöneticileri ve yapay zeka etiği araştırmacılarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Edge AI’deki güvenlik ve gizlilik zorluklarını anlayabilecektir.
- Kenar cihazlarını ve verileri güvence altına almak için en iyi uygulamaları uygulayabilecektir.
- Edge AI dağıtımlarında güvenlik risklerini azaltmak için stratejiler geliştirebilecektir.
- Etik hususları ele alabilecek ve düzenlemelere uyumu sağlayabilecektir.
- Edge AI uygulamaları için güvenlik değerlendirmeleri ve denetimleri gerçekleştirebilecektir.