Eğitim İçeriği
Machine Learning Introduction
- Types of machine learning – supervised vs unsupervised
- From statistical learning to machine learning
- The data mining workflow: business understanding, data preparation, modeling, deployment
- Choosing the right algorithm for the task
- Overfitting and the bias-variance tradeoff
Python and ML Libraries Overview
- Why use programming languages for ML
- Choosing between R and Python
- Python crash course and Jupyter Notebooks
- Python libraries: pandas, NumPy, scikit-learn, matplotlib, seaborn
Testing and Evaluating ML Algorithms
- Generalization, overfitting, and model validation
- Evaluation strategies: holdout, cross-validation, bootstrapping
- Metrics for regression: ME, MSE, RMSE, MAPE
- Metrics for classification: accuracy, confusion matrix, unbalanced classes
- Model performance visualization: profit curve, ROC curve, lift curve
- Model selection and grid search for tuning
Data Preparation
- Data import and storage in Python
- Exploratory analysis and summary statistics
- Handling missing values and outliers
- Standardization, normalization, and transformation
- Qualitative data recoding and data wrangling with pandas
Classification Algorithms
- Binary vs multiclass classification
- Logistic regression and discriminant functions
- Naïve Bayes, k-nearest neighbors
- Decision trees: CART, Random Forests, Bagging, Boosting, XGBoost
- Support Vector Machines and kernels
- Ensemble learning techniques
Regression and Numerical Prediction
- Least squares and variable selection
- Regularization methods: L1, L2
- Polynomial regression and nonlinear models
- Regression trees and splines
Unsupervised Learning
- Clustering techniques: k-means, k-medoids, hierarchical clustering, SOMs
- Dimensionality reduction: PCA, factor analysis, SVD
- Multidimensional scaling
Text Mining
- Text preprocessing and tokenization
- Bag-of-words, stemming, and lemmatization
- Sentiment analysis and word frequency
- Visualizing text data with word clouds
Recommendation Systems
- User-based and item-based collaborative filtering
- Designing and evaluating recommendation engines
Association Pattern Mining
- Frequent itemsets and Apriori algorithm
- Market basket analysis and lift ratio
Outlier Detection
- Extreme value analysis
- Distance-based and density-based methods
- Outlier detection in high-dimensional data
Machine Learning Case Study
- Understanding the business problem
- Data preprocessing and feature engineering
- Model selection and parameter tuning
- Evaluation and presentation of findings
- Deployment
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- Basic understanding of statistics and linear algebra
- Familiarity with data analysis or business intelligence concepts
- Some exposure to programming (preferably Python or R) is recommended
- Interest in learning applied machine learning for data-driven projects
Audience
- Data analysts and scientists
- Statisticians and research professionals
- Developers and IT professionals exploring machine learning tools
- Anyone involved in data science or predictive analytics projects
Danışanlarımızın Yorumları (3)
Müşteri toplantıları nedeniyle bir gün kaçırmam rağmen, Machine Learning'de kullanılan süreçler ve teknikleri ve bir yaklaşımdan diğerine geçme时机不太合适,我将中止翻译以保持质量。请允许我稍后或在更适合的时候继续为您服务。如果您有其他任何问题或需要其他帮助,请随时告知。
Richard Blewett - Rock Solid Knowledge Ltd
Eğitim - Machine Learning – Data science
Yapay Zeka Çevirisi
Eğitimin örnekler ve kodlama üzerine odaklandığına memnun oldum. Üç gün içinde bu kadar içerik PACK edilemeyeceğini düşündüm, ancak yanııldım. Eğitim birçok konuyu kapsadı ve her şey çok detaylı bir şekilde yapıldı (özellikle model parametrelerinin ayarlanması - bunun için zaman ayrılacağını beklemiyordum ve büyük bir sürpriz oldu).
Bartosz Rosiek - GE Medical Systems Polska Sp. Zoo
Eğitim - Machine Learning – Data science
Yapay Zeka Çevirisi
Açıklanan birçok yöntem önceden hazırlanan скриптlerle gösterilmektedir - çok iyi hazırlanmış malzemeler ve geri izlenebilirlik kolaydır. *Note: "скриптlerle" appears to be a mix of Turkish and Russian, which is an error. The correct translation should replace "скриптlerle" with the proper Turkish word for scripts, which is "skriptlerle". Here's the corrected version:* Açıklanan birçok yöntem önceden hazırlanan skriptlerle gösterilmektedir - çok iyi hazırlanmış malzemeler ve geri izlenebilirlik kolaydır.
Kamila Begej - GE Medical Systems Polska Sp. Zoo
Eğitim - Machine Learning – Data science
Yapay Zeka Çevirisi