Eğitim İçeriği
Python Fundamentals for Data Tasks
- Installing Python and setting up the development environment
- Language fundamentals: variables, data types, control structures
- Writing and running simple Python scripts
File Handling: CSV and Excel
- Reading and writing CSV files using the csv module and Pandas
- Working with Excel files using openpyxl/xlrd and Pandas
- Practical exercises: automating file conversions
Introduction to Pandas
- DataFrame basics: creation, indexing, selection, and filtering
- Aggregation and grouping operations
- Common cleaning operations: missing values, duplicates, and type conversions
Introduction to Polars
- Polars concepts and performance characteristics compared to Pandas
- Basic DataFrame operations in Polars
- Use-case example: when to choose Polars over Pandas
Advanced Data Transformation (Intermediate)
- Complex joins, window functions, and pivot operations in Pandas
- Efficient data processing patterns with Polars
- Chaining operations and optimizing memory usage
Process Automation with Python
- Writing scripts to automate repetitive data tasks and ETL steps
- Scheduling scripts with OS schedulers or task schedulers
- Logging, error handling, and notifications
Packaging Scripts and Best Practices
- Creating executables with PyInstaller or similar tools
- Project structuring, virtual environments, and dependency management
- Version control basics and documenting workflows
Hands-on Mini-Project
- End-to-end task: read raw files, clean and transform data, produce outputs
- Automate the workflow and package as a runnable script or executable
- Review and improvements based on peer feedback
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- Basic familiarity with programming concepts or willingness to learn
- Comfort using command-line or terminal for package installation
- Experience working with spreadsheets (CSV/Excel)
Audience
- Data analysts and operations staff automating data tasks
- Analytical engineers seeking lightweight ETL scripting
- Professionals interested in practical Python-based data workflows
Danışanlarımızın Yorumları (5)
Daha praktik ödevler yapmanın gerçekliği, projelerimizde kullandığımız verilere daha benzer verileri (raster formatındaki uydu görüntüleri) kullanmak ile ilgilidir.
Matthieu - CS Group
Eğitim - Scaling Data Analysis with Python and Dask
Yapay Zeka Çevirisi
Antrenörun çok bilgili olduğunu ve anlayışı açıklayabilmek için sorulara güvenle cevap verdiğini düşündüm.
Jenna - TCMT
Eğitim - Machine Learning with Python – 2 Days
Yapay Zeka Çevirisi
Çok iyi bir eğitmen hazırlığı ve uzmanlık, İngilizce'de mükemmel iletişim. Kurs pratikçe (egzersizler + kullanım scenarileri örnekleri paylaşım)
Monika - Procter & Gamble Polska Sp. z o.o.
Eğitim - Developing APIs with Python and FastAPI
Yapay Zeka Çevirisi
Açıklama
Wei Yang Teo - Ministry of Defence, Singapore
Eğitim - Machine Learning with Python – 4 Days
Yapay Zeka Çevirisi
Eğitmen, katılımcının hızına göre eğitim geliştirmektedir.
Farris Chua
Eğitim - Data Analysis in Python using Pandas and Numpy
Yapay Zeka Çevirisi