Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection Eğitimi
Fine-tuning is the process of adapting pre-trained AI models to specific domains and datasets.
This instructor-led, live training (online or onsite) is aimed at advanced-level data scientists and AI engineers in the financial sector who wish to fine-tune models for applications such as credit scoring, fraud detection, and risk modeling using domain-specific financial data.
By the end of this training, participants will be able to:
- Fine-tune AI models on financial datasets for improved fraud and risk prediction.
- Apply techniques such as transfer learning, LoRA, and regularization to enhance model efficiency.
- Integrate financial compliance considerations into the AI modeling workflow.
- Deploy fine-tuned models for production use in financial services platforms.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Eğitim İçeriği
Introduction to AI in Financial Services
- Use cases: fraud detection, credit scoring, compliance monitoring
- Regulatory considerations and risk frameworks
- Overview of fine-tuning in high-risk environments
Preparing Financial Data for Fine-Tuning
- Sources: transaction logs, customer demographics, behavioral data
- Data privacy, anonymization, and secure processing
- Feature engineering for tabular and time-series data
Model Fine-Tuning Techniques
- Transfer learning and model adaptation to financial data
- Domain-specific loss functions and metrics
- Using LoRA and adapter tuning for efficient updates
Risk Prediction Modeling
- Predictive modeling for loan default and credit scoring
- Balancing interpretability vs. performance
- Handling imbalanced datasets in risk scenarios
Fraud Detection Applications
- Building anomaly detection pipelines with fine-tuned models
- Real-time vs. batch fraud prediction strategies
- Hybrid models: rule-based + AI-driven detection
Evaluation and Explainability
- Model evaluation: precision, recall, F1, AUC-ROC
- SHAP, LIME, and other explainability tools
- Auditing and compliance reporting with fine-tuned models
Deployment and Monitoring in Production
- Integrating fine-tuned models into financial platforms
- CI/CD pipelines for AI in banking systems
- Monitoring drift, retraining, and lifecycle management
Summary and Next Steps
Kurs İçin Gerekli Önbilgiler
- An understanding of supervised learning techniques
- Experience with Python-based machine learning frameworks
- Familiarity with financial datasets such as transaction logs, credit scores, or KYC data
Audience
- Data scientists in financial services
- AI engineers working with fintech or banking institutions
- Machine learning professionals building risk or fraud models
Açık Eğitim Kursları 5 ve üzeri katılımcı gerektirir.
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection Eğitimi - Booking
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection Eğitimi - Enquiry
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection - Danışmanlık Talebi
Danışmanlık Talebi
Yaklaşan Etkinlikler
İlgili Kurslar
Advanced Techniques in Transfer Learning
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), karmaşık gerçek dünya problemlerine son teknoloji transfer öğrenimi tekniklerini uygulamak isteyen ileri düzey makine öğrenimi uzmanlarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Transfer öğrenimindeki gelişmiş kavramları ve metodolojileri anlayabilecektir.
- Önceden eğitilmiş modeller için alan özel uyarlama tekniklerini uygulayabilecektir.
- Sürekli değişen görevler ve veri kümeleriyle başa çıkmak için sürekli öğrenmeyi uygulayabilecektir.
- Görevler arasında model performansını artırmak için çoklu görev ince ayarını (multi-task fine-tuning) kullanabilecektir.
Deploying Fine-Tuned Models in Production
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), ince ayarlı modelleri güvenilir ve verimli bir şekilde dağıtmak isteyen ileri düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- İnce ayarlı modelleri üretime dağıtmanın zorluklarını anlayabilecektir.
- Modelleri Docker ve Kubernetes gibi araçları kullanarak konteynerize edip dağıtabilecektir.
- Dağıtılan modeller için izleme ve günlük kaydı uygulayabilecektir.
- Modelleri gerçek dünya senaryolarında gecikme ve ölçeklenebilirlik için optimize edebilecektir.
Alan Özelinde Fine-Tuning için Finance
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), kritik finansal görevler için yapay zeka modellerini özelleştirmede pratik beceriler kazanmak isteyen orta seviyedeki profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Finans uygulamaları için ince ayar temellerini anlayabilecektir.
- Finans alanına özgü görevler için önceden eğitilmiş modellerden yararlanabilecektir.
- Dolandırıcılık tespiti, risk değerlendirmesi ve finansal tavsiye oluşturma tekniklerini uygulayabilecektir.
- GDPR ve SOX gibi finansal düzenlemelere uyumu sağlayabilecektir.
- Finansal uygulamalarda veri güvenliğini ve etik yapay zeka uygulamalarını hayata geçirebilecektir.
Fine-Tuning Modeller ve Large Language Models (LLMs)
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), belirli görevler ve veri kümeleri için önceden eğitilmiş modelleri özelleştirmek isteyen orta ve ileri düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- İnce ayar prensiplerini ve uygulamalarını anlayabilecektir.
- Önceden eğitilmiş modelleri ince ayar için veri kümeleri hazırlayabilecektir.
- Büyük dil modellerini (LLM'ler) NLP görevleri için ince ayar yapabilecektir.
- Model performansını optimize edebilecek ve yaygın zorlukların üstesinden gelebilecektir.
Verimli Fine-Tuning Düşük Ranklı Adaptasyon (LoRA) ile
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), geniş ölçekli modeller için ince ayar stratejileri uygulamak isteyen orta seviyedeki geliştiriciler ve yapay zeka uygulayıcılarına yöneliktir; bunun için kapsamlı hesaplama kaynaklarına ihtiyaç duyulmaz.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Düşük Ranklı Adaptasyonun (LoRA) prensiplerini anlayacaklar.
- Geniş modellerin verimli bir şekilde ince ayarlanması için LoRA'yı uygulayacaklar.
- Sınırlı kaynaklara sahip ortamlar için ince ayarı optimize edecekler.
- Pratik uygulamalar için LoRA ile ince ayarlanmış modelleri değerlendirecek ve dağıtacaklar.
Fine-Tuning Çok Modlu Modeller
28 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yenilikçi yapay zeka çözümleri için çok modlu model ince ayarı konusunda uzmanlaşmak isteyen ileri düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- CLIP ve Flamingo gibi çok modlu modellerin mimarisini anlayabileceklerdir.
- Çok modlu veri kümelerini etkili bir şekilde hazırlayabilecek ve ön işleme tabi tutabileceklerdir.
- Çok modlu modelleri belirli görevler için ince ayar yapabileceklerdir.
- Gerçek dünya uygulamaları ve performans için modelleri optimize edebileceklerdir.
Fine-Tuning için Natural Language Processing (NLP)
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), önceden eğitilmiş dil modellerini etkili bir şekilde ince ayar yaparak NLP projelerini geliştirmek isteyen orta seviyedeki profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- NLP görevleri için ince ayarın temellerini anlayabilecektir.
- GPT, BERT ve T5 gibi önceden eğitilmiş modelleri belirli NLP uygulamaları için ince ayar yapabilecektir.
- İyileştirilmiş model performansı için hiperparametreleri optimize edebilecektir.
- İnce ayarlı modelleri gerçek dünya senaryolarında değerlendirebilecek ve dağıtabilecektir.
Fine-Tuning DeepSeek Özel Yapay Zeka Modelleri için LLM
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), belirli sektörlere, alanlara veya iş ihtiyaçlarına göre özelleştirilmiş yapay zeka uygulamaları oluşturmak için DeepSeek LLM modellerini ince ayar yapmak isteyen ileri düzey yapay zeka araştırmacıları, makine öğrenimi mühendisleri ve geliştiricilere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- DeepSeek modellerinin mimarisini ve yeteneklerini, DeepSeek-R1 ve DeepSeek-V3 dahil olmak üzere anlayabilecektir.
- Veri kümelerini hazırlayabilecek ve ince ayar için verileri ön işleyebilecektir.
- Alan özel uygulamaları için DeepSeek LLM'yi ince ayar yapabilecektir.
- İnce ayarlı modelleri verimli bir şekilde optimize ve dağıtabilecektir.
Fine-Tuning Büyük Dil Modelleri Kullanarak QLoRA
14 SaatTürkiye'da (çevrimiçi veya yerel) yapılan bu eğitmen yönetimi altında gerçekleştirilen canlı eğitim, QLoRA'yı kullanarak büyük modelleri belirli görevler ve özelleştirmeler için etkin şekilde ayarlamayı öğrenmek isteyen orta düzeyden ileri düzey machine learning mühendisleri, AI geliştiricileri ve veri bilimcilerine yönelik olarak tasarlanmıştır.
Eğitim sonunda katılımcılar aşağıdaki becerilere sahip olacaktır:
- QLoRA'nın teorisini ve LLM'ler için nicelikleme tekniklerini anlayacaklar.
- Büyük dil modellerinin alanına özgü uygulamalar için QLoRA'yı nasıl uygulayacaklarını öğrenecekler.
- Nicelikleme kullanarak sınırlı hesaplama kaynakları üzerinde fine-tuning performansını optimize edecekler.
- İleri düzeyde fine-tuned modelleri gerçek dünya uygulamalarında dağıtabilecek ve değerlendirebilecekler.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 SaatTürkiye'da (çevrimiçi veya yerel) gerçekleştirilen bu eğitmen yönetimi altında olan canlı eğitim, büyük AI modellerini daha iyi performans, güvenlik ve uyum için ince ayarlamak isteyen ileri düzey makine öğrenimi mühendisleri ve yapay zeka araştırmacıları için tasarlanmıştır.
Eğitim sonunda katılımcılar şunları yapabileceklerdir:
- RLHF'in teorik temellerini anlamak ve neden modern AI geliştiricileri için önemli olduğunu anlayacaklar.
- Kişiye özel geribildirimlere dayalı ödül modelleri uygulayarak tekrarlamaz öğrenme süreçlerini yönlendirebilecekler.
- RLHF teknikleri kullanarak büyük dil modellerini ince ayarlayıp insan tercihlerine uyumlu çıktılar elde edebilecekler.
- Üretim kalitesi AI sistemleri için RLHF iş akışlarını ölçeklendirmek üzere en iyi uygulamaları uygulayabilecekler.
Optimizasyon Maliyet Etkin Büyük Modeller Fine-Tuning
21 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), gerçek dünya senaryolarında maliyet etkin ince ayar için büyük modelleri optimize etme tekniklerinde ustalaşmak isteyen ileri düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Büyük modelleri ince ayar yaparken karşılaşılan zorlukları anlayabilecektir.
- Büyük modellere dağıtık eğitim teknikleri uygulayabilecektir.
- Verimlilik için model niceleme ve budama tekniklerini kullanabilecektir.
- İnce ayar görevleri için donanım kullanımını optimize edebilecektir.
- İnce ayarlı modelleri üretim ortamlarında etkili bir şekilde dağıtabilecektir.
Prompt Engineering ve Az-Örnekli Fine-Tuning
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), gerçek dünya uygulamaları için LLM performansını optimize etmek amacıyla istem mühendisliği ve az sayıda örnekle öğrenmenin gücünden yararlanmak isteyen orta düzeydeki profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- İstem mühendisliği ve az sayıda örnekle öğrenmenin prensiplerini anlayabilecektir.
- Çeşitli NLP görevleri için etkili istemler tasarlayabilecektir.
- LLM'leri asgari veriyle uyarlamak için az sayıda örnekle öğrenme tekniklerini kullanabilecektir.
- Pratik uygulamalar için LLM performansını optimize edebilecektir.
Parametre-Efektif Fine-Tuning (PEFT) Teknikleri için UZMs (Üstünlüklerle Öngörülen Modeller)
14 SaatTürkiye'da (çevrimiçi veya yerel) yapılan bu eğitmen yönetimi altında gerçekleştirilen canlı eğitim, LoRA, Adapter Tuning ve Prefix Tuning gibi yöntemleri kullanarak büyük dil modellerini daha uygun ve verimli şekilde fine-tuning yapmak isteyen orta düzeyde veri bilimcileri ve yapay zeka mühendislerine yönelik olarak tasarlanmıştır.
Eğitim sonunda, katılımcılar şunları başarabilecekler:
- Parametre verimli fine-tuning yaklaşımlarının teorisini anlamak.
- Hugging Face PEFT kullanarak LoRA, Adapter Tuning ve Prefix Tuning'i uygulamak.
- PEFT yöntemleriyle tam fine-tuning arasındaki performans ve maliyet ödünlerini karşılaştırmak.
- Düzenlencek hesaplama ve depolama gereksinimleri ile fine-tuning edilmiş LLM'leri dağıtmak ve ölçeklendirmek.
Introduction to Transfer Learning
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), yapay zeka projelerinde verimliliği ve performansı artırmak için transfer öğrenimi tekniklerini anlamak ve uygulamak isteyen başlangıç seviyesinden orta seviyeye kadar makine öğrenimi uzmanlarına yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Transfer öğreniminin temel kavramlarını ve faydalarını anlayabilmek.
- Popüler önceden eğitilmiş modelleri ve uygulamalarını keşfedebilmek.
- Özel görevler için önceden eğitilmiş modellerde ince ayar yapabilmek.
- Doğal dil işleme ve bilgisayarlı görü alanlarında gerçek dünya problemlerini çözmek için transfer öğrenimini uygulayabilmek.
Sorun Giderme Fine-Tuning Zorlukları
14 SaatBu eğitmen liderliğindeki, canlı eğitim (Türkiye çevrimiçi veya yerinde), makine öğrenimi modelleri için ince ayar zorluklarını teşhis etme ve çözme becerilerini geliştirmek isteyen ileri düzey profesyonellere yöneliktir.
Bu eğitimin sonunda katılımcılar şunları yapabilecektir:
- Aşırı öğrenme, yetersiz öğrenme ve veri dengesizliği gibi sorunları teşhis etmek.
- Model yakınsamasını iyileştirmek için stratejiler uygulamak.
- Daha iyi performans için ince ayar işlem hatlarını optimize etmek.
- Pratik araçlar ve teknikler kullanarak eğitim süreçlerini ayıklamak.